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1 INTRODUCTION 
I t  has become clear from measurements of the acceleration 

environment in the Spacelab [ 1.21 that the residual gravity levels on 
board a spacecraft in low earth orbit can be significant and should be of 
concern to experimenters who wish to take advantage of the low gravity 
conditions on future Spacelab missions and on board Space Station. 
While accelerations may be orders of magnitude lower than that 
experienced at the earth's surface, they are nonetheless finite and pose 
potential problems for certain types of experiment, particularly those for 
which minimization of accelerations is desirable. Motivated by the need 
to further our understanding of the effects of residual accelerations on 
materials science experiments we have embarked upon a research 
program, funded by NASA, entitled "Process Modelling for Space Station 
Expertments It. The basic goals of the program are to better understand 
the low-gravity tolerance of three classes of materials science 
experiments: Crystal growth from a melt, a vapor and a solution. Each 
class of experiment is represented by one or more "generic" numerical 
models which incorporate the essential elements of the mass, heat and 
momentum transport mechanisms associated with each process. The 
results of the research will provide guidance toward the determination of 
the sensitivity to the low-gravity environment, the design of the laboratory 
facilities and the timelining of materials science experiments. 

To date, analyses of the effects of the microgravity environment have, 
with a few exceptions [3-51, been restricted to order of magnitude 
estimates [6-91. The validity of the various estimates has only been 
demonstrated for a few special cases [lo] and we have found that some 
techniques used to estimate the response to residual gravity are liable to 
be grossly inaccurate. 

In this communication we report preliminary results obtained from 
numerical models of the effects of residual steady and time dependent 
acceleration on 

1) heat, mass and momentum transport during the growth of a dilute 
alloy by the Bridgman-Stockbarger technique 

2) the response of a simple fluid physics experiment involving 
buoyant convection in a square cavity. 
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Figure 1. Grashof number dependence of convection induced 
radial non-uniformity in Ga concentration in a Ge 
crystal growing from the melt. Comparison of a priori 
estimates with numerical simulations [ 161. (After 
Camel and Favier [151.) 

frequency [HzI 

I Figure 2 a. Tolerable residual accelerations for 
(a) a fluid physics experiment 
involving a temperature gradient, 
(b) a crystal growth experiment. 

I (c) a thermo-diffusion experiment. 

Figure 2 b. G-level tolerance for stngle 
frequency disturbances. 
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Comparison of our results with the current "g-level" requirement for 
the Space Station [ 1 11. suggests that the requirements would be adequate 
for these experiments for the specific dimensions and operating 
conditions investigated. 

2 SUMMARY OF PREVIOUS WORK 
2.1 ORDER OF WNXTUDE ESTIMATES 

To date, g-tolerance levels for a variety of processes have been 
estimated by Langbein and Tiby [6], Favier et al. [7,9] and Monti and 
Napolitano [5,12]. Their work is summarized in a recent review article 
[9]. Probably the most refined methods of constructing order of 
magnitude estimates of the effects of low-gravity levels on materials 
processing experiments are those developed by Camel and Favier [ 13- 151. 
These methods attempt to arrive at an appropriate choice of physical 
length scale, which is a crucial factor in determining the fidelity of the 
estimate. The importance of length scales is highlighted by the failure of 
the Langbein-Tiby approach (which neglects the need for an appropriate 
choice of length scale) to agree with our calculated results (see Section 
4) and those obtained by others. Indeed, their estimates overestimated 
the effects of steady low-gravity by several orders of magnitude. I t  
should be pointed out, however, that an appropriate choice of length 
scale for the situation they examined is not readily determined. This is 
true for many other situations. In view of the typically three-dimensional 
nature of the transport environment and the large disparity in transport 
coefficients for heat, mass, momentum and species in the systems of 
technological interest, the problem remains that an a priori choice of 
length or time scales may not be obvious. For example, the estimates of 
Rouzaud et al. [lo] and Camel and Favier [15] are in reasonable 
agreement with the calculations of Chang and Brown [ 161 for a Schmidt 
number of fifty (see figure 1) but overestimate the amount of radial 
segregation for a Schmidt number of ten. 

For time-dependent disturbances estimates of the response of a 
system to a "monochromatic" or single frequency variation in residual g- 
level (see figure 2 for typical results). Since, in general, the microgravity 
environment is not characterized by a single frequency disturbance the 
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"g-tolerance curves" may be misleading if the system displays an additive 
response, or a resonant frequency is excited. An example of the additive 
effect of a multiple component disturbance is that of the DMOS 
experiment [17] which flew on STS-61-B. The post flight analysis has 
demonstrated that the amount of mixing observed between organic 
liquids can be explained by the additive response of the system to a 
multicomponent disturbance. It should be emphasized, however, that 
the response of a system to a disturbance consisting of several 
frequencies will, in general, not be equivalent to the sum of the responses 
of that same system to the component single frequency disturbances. 
Reasons for this departure from linearity are discussed in Section 3. 

2.2 NUMERICAL MODELS 
The effects of low gravity on the transport of heat and momentum 

have been examined by Robertson et al. [18,19] Spradley et al. [20] and 
Kamotani and Ostrach [3]. Robertson et al. found that for convection in 
circular cylinders with azimuthal variations in temperature at the 
boundary and the gravity vector applied perpendicular to the cylinder 
axis, the intensity of convection follows the prediction of Weinbaum's first 
order theory1 [21] for low Rayleigh numbers. 
examined the effect of a variety of acceleration vectors. They found that if 
the applied disturbance is decomposed into a steady mean part and an 
oscillatory part, the steady mean part is more important than the 
oscillatory part in determining the flow field and heat transfer rate. 

Kamotani and Ostrach (31 solved a linearized approximation of the 
Boussinesq equations, and investigated the effect of an  applied 
acceleration consisting of a time mean part and an oscillatory part on the 
temperature and flow fields in a rectangular enclosure. They found that 
the thermal convection was predominantly oscillatory in nature. 

McFadden and Coriell [4] have undertaken 2-D calculations of the 
effects of time-dependent accelerations on lateral compositional variations 
during directional solidification. The gravitational acceleration was 
assumed to have a uniform magnitude and rate of rotation. The degree of 

Spradley et al. [20] 

Weinbaum's first order theory predicts a simple sinusoidal dependence of the 
maximum velocity as a function of orientation of the gravity vector. 
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Figure 3. Compositional non-uniformity as a h c t i o n  of 
Rayleigh number, for Schmidt numbers in 
the range 10 - 50. (After Chang and Brown 
[161.) 
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compositional non-uniformity was found to increase with increasing 
period (angular rate of rotation). 

In order to improve our understanding of the physics of heat and 
mass transport, and to investigate the extent to which the order of 
magnitude estimates can be relied upon to predict the low gravity 
tolerance levels, we have developed numerical models of "generic" 
experiments and examined them under a variety of specific low gravity 
conditions. We have found that the degree to which a fluid system 
responds to variations in the residual acceleration depends not only on 
the physical properties of the fluids, but that the nature of that response 
(particularly the effect on heat and solute transport) is strongly 
dependent on the nature of the thermal boundary conditions of the 
system. 

In this report we describe the preliminary results of our work which 
focuses on a generic model of directional solidification by the Bridgman 
technique. The model is based upon the pioneering work of Chang and 
Brown [ 161 involving (axisymmetric) numerical simulations of steady 
directional solidification in a Bridgman configuration. Through a 
systematic variation of the Rayleigh number they found that the 
sensitivity of radial solute segregation to melt convection is such that it 
reaches a maximum at intermediate values of the Rayleigh number (see 
figure 3). Thus in order to be an effective processing parameter the 
degree to which the acceleration is reduced must be sufficient to avoid 
such solute transport regimes. 

In the following sections we formulate the basic model, define the 
range of operating conditions under consideration and consider the effect 
on solute redistribution of a variety of orientations of steady and time- 
dependent acceleration vectors. 
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Figure 4. Sketch defining our  prototype model for directional 
solidification 
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3. STEADY AND TIME-DEPENDENT LOW GRAVITY: EFFECT ON 

TRANGPORT CONDITIONS DURING DIRECTIONAL SOLIDIFICATION 

BY THE BRIDGMAN TECHNIQUE. 

3.1 FORMULATION OF THE MODEL 

As a first attempt to model the effect of residual accelerations on 
crystal compositional uniformity during directional solidification by the 
Bridgman-Stockbarger technique we adopted and modified the basic 
model advanced in Chang and Brown's [ 161 pioneering work. The basic 
attributes of our two-dimensional and three-dimensional models are as 
follows. 

Directional solidification takes place as an ampoule is translated 
through fixed "hot 'I and "cold" zones. The zones are separated by a 
thermal barrier which is modelled using adiabatic sidewalls. The 
temperature conditions are chosen such that the upper and lower parts 
of the system are solid and molten respectively. Translation of the 
ampoule is modelled by supplying a melt at a constant velocity Vm and a 
dilute bulk composition c,at the bottom of the computational space 
considered. The crystal-melt interface is located at a distance L from the 
bottom of the computational space and advances at a rate Vg = Vm(Pm/Ps) 
where pm and ps are the melt and crystal densities, respectively. The 
temperature at the interface is taken to be TM the melting temperature of 
the crystal, while the lower boundary is held at a temperature TH. In an 
actual experiment, owing to the flnite length of the ampoule there is a 
gradual decrease in length of the melt zone. I n  this model transient 
effects related to this change are ignored. Thus, it is assumed that the 
ampoule is sufficiently long for these effects to be negligible. The only 
transient effects to be considered will arise directly from the time 
dependent nature of the residual gravity field. We also assume that the 
contribution of the solute to convection is negligible. Convection is driven 
only by thermal gradients. 

The governing equations are cast in dimensionless form using L, 
K/L (where K is the melt's thermal diffusivity), pmK2/L2 , TH-TM, and cm 
to scale the lengths, velocity, pressure, temperature and solute 
concentration respectively. 



TABLE 1 
'Qpical forms of the acceleration vector examined in this work. 

hlx2uhs 

g(t) = ( 
d2(10)-6, t < t, , t > 

31/2(10)-3, tl< t < 
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For the two dimensional model a dilute binary melt is assumed to 
occupy a rectangular region &2 which is bounded at z= 0 and z= 1 by 
planar surfaces (see figure 4). In the three dimensional model the 
rectangular region is replaced by a circular cylinder with a dimensionless 
radius R = 0.5. 

The dimensionless equations governing momentum, heat and solute 
transfer in the melt are 

au 
at  - + (grad u)u  = -gradp + PrAu +RaPrOg(t), 

ae 
at 
- + u0grad0 = 

sc ac 
Pr at 
-(- + u0gradC) = A C, 

(3) 

(4) 

where, u(x,t) represents the velocity, 8 = (T(x,t) - TM))/(TH - TM) the 
temperature (where TH - TM is the temperature difference between the hot 
zone and the crystal interface) and C represents the solute concentration. 
The parameters R = V / K ,  Ra= ~P(TH-TM)L~/K and Sc=v/D are respectively 
the Randtl, Rayleigh and Schmidt numbers. The term g(t) in equation 
(1) represents the time-dependent gravity vector. The value of g in Ra is 
taken to be 980 cm 5-2, i.e. equal to the terrestrial acceleration. Thus, the 
magnitude of g represents the ratio between the actual residual 
acceleration and g. Table 1 lists the forms of g(t) we have examined to 
date. 

The following boundary conditions apply at the crystal-melt interface 

e = 0, (5) 
u*N =Pe/O, 

N X U X N  =o ,  
ac PeSc - = - (1-k) C, aZ Pr 

(7) 

where N points into the crystal and is the unit vector perpendicular to the 
planar crystal melt interface, and , (J = pm/ps and k is the distribution 



TABLE 2 

Dimensionless parameters and representative values for gal- 
Iium-doped germanium system 

Group Defini tion value 

Rayleigh number Ra - &T,- TJL’/aLv 0-10’ - .T ,I 

Prandtl number Pr v/aL 0.01 
Pkkt number P e r  V&UL 0.005 
Conductivity ratio K = k S / k L  1.0 
Stefan number Sa A H ~ / P L c ~ ~ ( T ~ -  T,) 1.0 
Schmidt number sc = V / 9  10 
Thvmal diffusivity ratio y - uy’oL 1 .o 
Density ratio 0 -  P d P L  1 .o 

Mattrid propeniez ~ t c r i s ~ k  of galliumdoped germanium 
~ 

propetty value 

I 

Thcrmd conductivity of melt (k L) 
Thcnnal conductivity of solid (k,) 
Heat capaaty of meit ( cpL) 
Heat capacity of solid (c,,,) 
Density of melt (pr)  
Density of solid ( p s )  
Mdting tepcraturc (7,) 
Kinematic viscosity of meit ( v )  
Heat of fusion (AH,) 
Thermal expansion uxfficient ( B )  
Diffusivity of Ga in G c  (9) 
Segregation coefficient of 
Gain G c  (k) 

~ 

0.17 W/K-CXIY 
0.17 W/K*UII 
039 J/g-K 
0.39 J/g - K 
5.6 g/m’ 
5.6 g / d  
958°C 
1.3 x 10-3 - 
506 J/g 

33 x m Z / s  

0.25 X IOe3 K” 

0.1 
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coefficient. We define the measure of compositional non-uniformity in the 
crystal at the interface to be 

where cs is the (dimensional) solute concentration in the crystal. 
5 = ~GllzuC - cmin )/k = (csmax - C m i n  )/coo. 

At the "inlet" (z=O) the following boundary conditions are applied 
ac 
- = -(C-1), aZ Pr 

e =  1, 

(9) 

(1 1) 

(12) 

u - N  =Pea, 

N X U X N  =o,  
Equations (8) and (9) express conservation of mass at the crystal- 

melt interface and the "inlet" respectively. Equations (6) and (10) 
guarantee continuity of the melt with the crystal and with the supply of 
melt at the "inlet", while equations (7) and (1 1) ensure no-slip tangent to 
the interface and the top surface. At the side walls the following 
conditions are applied 

(13) grad C. ew= 0, u.N =Peo, ew. u = 0, 

along with 
e =  1, 

grad8 ew =0, 
in the isothermal zone and 

in the adiabatic zone. Here ew is the outward pointing normal to the 
ampoule wall. 

While the above model does not strictly apply to a specific furnace 
(for example details of the heat transfer at the ampoule walls are 
neglected), it nonetheless serves as a reasonable "generic" model with 
which to carry out a preliminary analysis of a directional solidification 
experiment under conditions characteristic of the low gravity environment 
of space. 

Our calculations are limited to thermo-physical properties 
corresponding to the system gallium-doped germanium (Ga:Ge). The 
definitions and values of the dimensionless groups and the associated 
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thenno-physical properties are given in Table 2. For all our calculations 
the length, L, of the hmace  and the temeperature difference TH - TM 
were taken to be 1 cm and 1150 C, respectively. 

3.2 -HOD OF SOLUTION 

The governing equations were solved using the code PHOENICS [221. 
PHOENICS embodies a finite volume or finite domain formulation 1231. 
This method first involves the discretization of the governing equations 
(expressed in conservation form) within finite control volumes or cells. 
Within each of these topologically Cartesian volumes a "grid node" is 
identified. The grid node may be thought of as a point within the volume 
at which the fluid properties are representative of the whole volume. The 
fluid properties are interpolated from the cell boundary to the interior. 
The discretized differential equations are then integrated over the control 
volume. After this procedure has been completed for the entire 
computational domain a set of "finite domain equations" results. These 
are solved iteratively using a tri-diagonal matrix algorithm (TDMA) i.e. an 
alternating direction implicit (ADI) method. For the 2-D calculations 
discussed in this report we employed a 40x39 grid. The 3-D calculations 
were performed in a circular cylindrical domain with 20 nodes in the 
radial direction, 12 in the azimuthal direction and 39 in the axial 
direction. We found that for the 2-D calculation less than 40 points in 
the direction parallel to the interface resulted in poor convergence of the 
solute field. A Tchebyshev mesh was employed in the direction 
perpendicular to the interface which improves resolution and furthermore 
admits the use of a spectral operator2 to solve the solute fields. The 
addition of a subroutine with a spectral operator results in faster 
accurate calculations at higher values of the Schmidt number. 

The scheme employed has the same accuracy as a finite difference 
scheme which is of the order Ax, where Ax is the distance between the 
grid nodes. The time scheme is implicit and thus unconditionally stable. 
However, small time steps are required to obtain accurate solutions. For 

A spectral method which can be used as a PHOENICS subroutine has been developed 
at the CMMR . 
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highly non-linear flows the use of under-relaxation is necessary to 
eliminate divergence and to ensure good convergence of the solutions. 

The mixed Neumann-Dirichlet boundary conditions at the inlet and 
the crystal melt interface have the form 

ac 
- + p c =  0, aZ 

where p is a constant. This class of conditions is better handled via the 
transformation (particularly when Q is large): 

s =  1nC. (17) 
Then 

and (1 6) becomes 
dS - + p =  0. aZ 

Thus solute transport equation (4) is transformed to 

+ u grads) = As+ grads-grads. 

Having solved for s, C can be obtained from (17). 
In order to test our codes we compared our calculations (to be 

discussed in detail in the following sections) with the results of Chang 
and Brown axisymmetric calculations [16]. Our 3-D computations were 
found to be in agreement with their work. For Rayleigh numbers of 6.25 
and greater (corresponding to Ra > 100 in [ 161) the two dimensional 
radial segregation predictions were approximately 10% higher than 
obtained from our three dimensional calculations. In addition we carried 
3-D non-axisymmetric steady calculatlons in order to calibrate our 2-D 
results. For one set of examples we found that with 42 (10)-5g parallel to 
the interface the percentage compositional uniformity predicted by the 2- 
D calculation (5 = 152%) was twice that predicted by the full 3-D 
calculation. This difference is mainly due to the fact that the solute is 
redistributed azimuthally as well as laterally. A comparison between 2- 



10 

and 3-D calculations for ./2(10)-6 g revealed that there was no significant 
difference in 6 between the 2-D and 3-D calculations. 
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Figure 5. The steady flow field produced by a residual 
acceleration with a magnitude d2( lO)-5 g 
acting parallel to the crystal melt interface. The 
maximum speeds are approximately twice the 
growth speed, Vg = 6 prn S' l .  
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Figure 6. The solute field associated with the flow 
depicted in figure 5. For this case c= 152%. 
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Figure 7. The steady flow field produced by a residual 
acceleration with a magnitude 5d2( 10)-6 g 
acting at an angle of 450 to the x-axis. The 
maximum speeds are approximately twice the 
growth speed, Vg = 6 Prn s-1. 

I 
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I 

Figure 8. The solute field associated with the flow 
depicted in figure 7. For this case c= 57%. 
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Figure 9 The steady flow field produced by a residual 
acceleration with a magnitude &( 10)-6 g 
acting parallel to the crystal melt interface. The 
maximum speeds are only slightly higher than 
the growth speed, Vg = 6 pm s-1. 
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z i i 
Figure 10, The solute field associated with the flow 

depicted in figure 9. For this case k= 22%. 
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e =O 

Figure 11. The temperature field for all 2-D cases 
discussed in this report. 
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2) Steady accelerations: 3-D 
Five three-dimensional calculations were undertaken in order to 

calibrate our results, obtained using the code PHOENICS, against those 
of Chang and Brown (161 and also to examine the influence of a more 
realistic geometry. Three were axisymmetric with go anti-parallel to the 
solidification direction. Two were fully three-dimensional with & parallel 
to the crystal-melt interface. The compositional non-uniformity 6 was 
found to be approximately 10% lower for the axisymmetric cases than 
their 2-D analogs. These calculations were carried out for I I g I I = 10-4, 
10-3 and 10-2. The fully 3-D cases were carried out for I I g I I = ./2( lO)-5 
and ./2(10)-6. At the higher value of the residual acceleration 6 = 75%, 
approximately half the 2-D value. At ./2(10)-6 g, 6 = 26%. Thus, for this 
case there was little difference between the 2 and 3-D predictions. Figures 
12 and 13 depict the variation in solute concentration over the interface. 



Figure 12. The steady solute distribution over the crystal- 
melt interface consequent to a ./2(10)-5 g 
acceleration oriented parallel to the interface. 

6 = 75%. 
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Figure 13. The steady solute distribution over the crystal- 
melt interface consequent to a &( 10)-6 g 
acceleration oriented parallel to the interface. 

6 = 26%. 
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3) Single frequency: combined steady + single frequency 

A number of different types of periodic disturbances were examined. 
Single frequency disturbances of the form g(t) = g, + g, cos(2~0,t)  were 
examined with go = 0, d2(10)-6 and d2(lO)-5. oriented parallel to, 
perpendicular to and at 450 to the crystal-melt interface. The range of 
frequencies examined was 0, = 10 -4, 10-3, 10-2, 10-1. 1 and 10 Hz. For 
frequencies greater than 10-2 Hz, there were no discernable effects on the 
solute fields. The velocity field did, however, respond to the oscillatory 
disturbances. For the case of 10-3 Hz (at 5x1 0-6 4) the response of the 
solute field was significant. Lateral and longitudinal non-uniformity 
levels in excess of 15% were calculated. Figures 14 and 15 show the 
lateral non-uniformity as a function of time, imd highlight the additive 
effects of steady and an oscillatory disturbance components. 

Selected results showing the effects of multiple frequency disturbances 
are given in figures 16-19. The figures illustrate the response to a three 
component acceleration consisting of a steady and two periodic 
contributions: g(t) = go + g, cos(2x10-3t) + g2 c:os(2~10-2t), where I I go I I 
= d2(10)-6, 1 1  gl I I = 3d2(10) -6 and11 g2 I I = 342(10)-5; and a four 
component acceleration: g(t) = go + gl cos(2x10-3t) + g2 cos(2xl0-2t) + 
93 cos(2xlO-lt), where I I go I I = d2(10)-6, I 181 I I = 3.\/2(10)-6, I I g2 I I = 
3d2(10)-5 and I I 83 I I = 342(10)-4. The response is complex and is 
characterized by non-linear interaction between the components of the 
disturbance. Our results suggest that in general the response of a 
system to multiple frequency disturbances will be difficult to predict 
without specific analysis. A comparison between the two cases illustrated 
in figures 16-18 readily shows that the addition of the 10-1 Hz component 
to the 3-component disturbance drastically changes the nature of the 
velocity field and the time dependent behavior of the lateral non- 

accelerations 

4) Multiple frequency accelerations 

uniformity. 
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Figure 14. 4 plotted as a function of time for an oscillatory 
residual acceleration with a maximum 
magnitude of 3d2( lO l -6  g and a frequency of 
10-3 HZ, acting pardel  to the crystal-melt 
interface. 



t 1 
_ _  

Figure 15. 4 plotted as a function of time for a residual 
acceleration consisting of a steady part with a 
magnitude of d2(10)-6 g and a n  oscillatory 
part with a maximum magnitude of 362( 10)-6 
g and a frequency of 10-3 Hz, acting parallel to 
the crys tal-melt interface. 
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Figure 16. 5 plotted as a function of time for multi- 
component disturbances. 

components : 

where I I go I I = ./2(10)-6, I I g1 I I = 3./2(10)-6 

a) a steady low g background plus two periodic 

g(t) = g o  + g, cos(2zl0-3t) + gz cos(2x10-2t), 

and I I g2 I I = 31(2(10)-5. 
b) a steady low g background plus three 

periodic components : 
g(t) = go + g, cos(2z10-3t) + g, cos(2zl0-2t) 
+ g3 cos(2zl0-1t), 
where I I goI I = ./2(10)-6, I I g1 I I = 3d2( 10)-6 , 
I I g2 I I = 31(2(10)-5 and I I g3 I I = 31(2(10)-4. 
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Figure 17. Maximum velocity as a firnction of time for the 
response to the multi-component disturbance 
of figure 16 a. 
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Figure 18, Maximum velocity as a function of time for the 
response to the multi-component disturbance 
of figure 16 b. 
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Figure 19. Response of a component of velocity to the 
multi-component disturbance of figure 16 b. at 
a selected point in the melt as a function of 
time. Note the characteristics of a combination 
resonant response. 
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8) Impulse-type accelerations 
Four cases of impulse-type disturbances were examined. Of these 

the one second duration pulses had the most dramatic effects. Figure 20 
depicts the flow field immediately after a one second 3x10-3 g impulse 
oriented parallel to the crystal interface. Figures 21-26 illustrate the 
development of the solute field following the impulse. The impulse has 
been superimposed onto a steady flow which is associated with a 42( 
g steady acceleration oriented anti-parallel to the impulse. Note that the 
effects are long lasting. The velocity field relaxes back to the initial state 
after some 300 seconds. The response of the solute field lags behind. 
The effect of the impulse is to initially reverse the flow field (compare 
figures 7 and 20). This has the effect of reducing the lateral 
compositional non-uniformity, eventually changing its sense. At 
approximately 260 seconds after the termination of the impulse the 
lateral segregation reaches a value of -26% whereupon it increases in 
value until it approaches its initial level of 21% after some 2000 seconds 
have elapsed. 

A shorter duration (10-1 seconds) pulse resulted in a maximum 
deviation of the lateral non-uniformity of only 5% from the initial level 
after 350 seconds. 

The effects of two one second pulses separated by one second were 
also calculated. The magnitude of the pulses was 3x10-3 g, and they 
were oriented parallel to the crystal interface. Their main effect was to 
drive the lateral segregation from 22% (the initial value) to -76% after 225 
seconds. 

So-called [5] "compensating" double pulses were also examined. A 
pulse anti-parallel to the background steady acceleration followed by an 
equal but opposite pulse does not result in a "null" effect. While the flow 
generated by the first pulse is reversed by the second pulse there is a net 
flow following the termination of the second pulse. This flow is in the 
same sense as the initial steady flow and results in an increase of the 
lateral non-uniformity in composition to a maximum of 24% at 100 
seconds, whereupon it decays slowly to its initial value. 
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Figure 20. The velocity field after a one second pulse of 
3(10)-3 g superimposed on a steady flow 
caused by a d2( 10)-6 g acceleration, both 
parallel to the crystal melt interface. The 
impulse is in the opposite direction to the 
background acceleration. Note that the 
maximum velocity magnitudes are of the order 
3(10)-2 cm s-1 i.e. about 500 times the 
those of figure 9. 
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Figure 21. Solute field immediatley after the termination of 
the impulse. 
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Figure 22. Solute field 31 seconds after the termination of 
the impulse. 
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Figure 23. Solute field 81 seconds after the termination of 
t he  impulse. 
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Figure 24. Solute field 431 seconds after the termination of 
the impulse. 
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Figure 25. Solute field 881 seconds after the termination of 
the impulse. 
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Figure 26. Solute field 1781 seconds after the termination - 

of the impulse. 



b . 36 

3.4 SUMMARY OF RESULTS FOR D W I O N A C  SOLIDIFICATION 
The salient results of our preliminary calculations for materials with 

properties and growth conditions similar to those listed in Table 2 can be 
summarized as follows: 

1) A steady background level on the order of 10-6 - 10-5 g can be 
tolerated provided that the acceleration vector is aligned with the axis of 
the growth ampoule, and provided that no accelerations with frequencies 
less than 10-2 Hz (and amplitudes on the order of the steady component) 
are present. 

2) For a Axed growth rate, the amount of lateral segregation is very 
sensitive to the orientation of the steady component of the residual 
gravity vector. The worst case appears to be when the acceleration vector 
is parallel to the crystal interface. At growth rates on the order of 
microns per second, this orientation can lead to non-uniformities of 22% 
when the magnitude of the acceleration is d2( 10)-6 g. If, however the 
growth rate is lowered by an order of magnitude, the non-uniformity is 
reduced significantly (down to 4-5% in this case). 

3) The response of the solute field, and the lateral non-uniformity, to 
oscillatory accelerations varies from no response at all (at frequencies 
above 1 Hz with amplitudes below 10-3 8) to a significant response at 10-3 
Hz at amplitudes on the order of 10-6 g. In addition, additive effects were 
observed for combinations of a steady component and a low frequency 
component. These additive effects gave rise to significant lateral and 
ZongWinal non-uniformities in concentration. 

4) A complicated non-linear response was observed for disturbances 
composed of a steady part and several frequencies. In one case that we 
examined, a component of the disturbance with a frequency of 10-1 Hz 
and a magnitude of 10-4 g appears to interact with lower frequency 
components to produce significant variations in the velocity and solute 
fields. In the absence of this 10-1 Hz disturbance the variations in the 
solute and velocity fields are still considerable but have a very different 
character. Owing to the non-linearities it is dimcult to draw any general 
conclusions regarding the nature of the response to multiple frequency 
disturbances. We conjecture however that the response of the velocity 
depicted in figure 19 is due to a combination resonance [24]. This is 
justifiable if one considers that the temperature field is insensitive to the 
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flow. and is independent of time. Thus, the buoyancy term in the 
momentum equation (1) acts like a forcing function rather than a non- 
constant coefficient preceding a dependent variable. Had the 
temperature field been time-dependent the resonance could still arise. 
Although in this instance parametric excitation [24,25] can also play a 
role and the types of resonance possible would include primary, 
secondary, and combination resonances, as well as saturation and non- 
existence of periodic response [24]. 

5) The effects of impulse-type disturbances can be severe and can 
extend for a long time (1-2x103 seconds) after the termination of the 
impulse. The nature of the response depends on the magnitude, 
direction and duration of the impulse, and whether sequential opposing 
impulses are involved. A so-called "compensating" double pulse will not 
always result in offsetting effects. 

A pulse with a one second duration, or a combination of such pulses 
has a drastic effect on the segregation levels at pulse amplitudes of 10-3 
g. Impulses appear to have important consequences for the transient 
behavior of growth systems in general. 

I t  should be borne in mind that our calculations have only covered a 
small part of a large parameter space. In particular it should be noted 
that for a given level of residual acceleration the amount of lateral 
segregation can be expected to increase with increasing Schmidt number 
and with decreasing distribution coefficient k [16,26]. We have also 
examined the effect of the growth rate and have found that a reduction in 
growth rate by an order of magnitude will result in a reduction in non- 
uniformity (for the range of parameters we have studied). This is 
consistent with the results of Adornato and Brown [26]. The 
consequences of variations in these parameters in relation to the type of 
time dependent accelerations dealt with in this preliminary 
communication will be investigated as part of the ongoing research 
program at the CMMR. 
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4. THERMAL CONVECTION IN A SQUARE CAVITY 

This work was carried out in order to investigate the reliability of 
order of magnitude estimates of the affects of residual accelerations on 
transport conditions in simple fluid systems. 

The chosen systems involved thermal convection in square and 
rectangular cavities. The rigid upper and lower boundaries were 
maintained at constant but different temperatures. The temperature 
differences examined ranged from 5 K to 50 K over 1-5 cm. The sidewalls 
were insulating. The applied residual gravity vector was time dependent 
in both magnitude and orientation. A variety of accelerations were 
examined with forms similar to those listed in Table 3. I t  became readily 
apparent that while the fluid responded to the body force, the 
temperature field was relatively insensitive. At Prandtl numbers of order 
one the temperature field exhibited minor oscillations about the basic 
diffusion profile (a simple linear profile for this case). However, none of 
the cases examined showed a significant fluctuation in heat flux at the 
low temperature boundary. The major reason for this appears to be the 
strong influence of our thermal boundary conditions on the heat transfer 
rates in the system. 

In order to test the reliability of order of magnitude estimates the g- 
sensitivity predicted by the Langbein-Tlby approach was also tested. The 
basic scenario is that described in their paper [6]. In manyfluid physics 
experiments, when particle motfm is observed or the behaviour of a growth 
front is studied, one can assume that Sp/p [the average density change] in 
the test volume has the order of magnitude 1 0 2  . ..the diameter of the test 
volume is chosen to be 2 cm, temperature dizerences of 5 K are applied 
and an accuracy of ST = 0.05 K is required . . .I '  In addition we assumed 
adiabatic sidewalls. 

The estimated tolerable g-level for the the above requirement is given 
as 

amax = 2[ OZ + (v/ 0 )2]1/2 [ OZ + (IC/ L2 )2]1/2, 
and is based on a "typical velocity" magnitude of [6] 

where o is the frequency of the residual acceleration, v = 10-2cm2 s-1 is 
the kinematic viscosity of the fluid, K = 10-2cm2 5-1 is the thermal 
diffusivity, L is the characteristic length (taken to be 2 cm) and is the 

o u(r)l = (6p/p) 0-1[ OZ + (v/ 0 )21-1/2, 
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magnitude of the acceleration. The predicted order of magnitude of u for 
a steady acceleration of 10-6g is which is three orders of magnitude 
higher than the maximum velocity computed from the solution of the full 
non-linear equations. In every case we examined, the maximum velocity 
estimates were at least two to three orders of magnitude higher than our 
maximum computed velocities. As a consequence, the effect of residual 
accelerations tend to be over estimated. These discrepancies can be 
explained simply in terms of lack of a suitable length scale on which to 
base the estimates and the fact that order of magnitude estimates cannot. 
in general, properly account for the geometrical and thermal nature of the 
boundary conditions. 
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